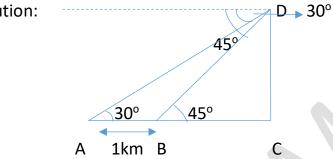
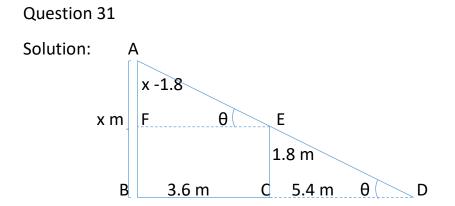
Class 10-Mathematics

Instructions for students: The notes provided must be copied to the Maths copy and then do the homework in the same copy.


Chapter 20

Heights and Distances

Exercise 20(Continued)


Question 19

Solution:

Let A and B be the two kilometre stones and C be the foot of the hill.

Distance between A and B			1 km
In ∆BCD, tan 45°		=	$\frac{DC}{BC}$
1		=	$\frac{DC}{BC} \Rightarrow$ BC = DC(1)
In ∆ACD, tan 30°		=	$\frac{DC}{AC}$
~	$\frac{1}{\sqrt{3}}$	=	$\frac{BC}{BC+1}$ (From (1) and from figure)
	BC+1	=	$BC\sqrt{3}$
	$BC\sqrt{3} - BC$	=	1
	$BC(\sqrt{3}-1)$	=	1
	BC	=	$\frac{1}{\sqrt{3}-1} = \frac{1}{1.732-1} = \frac{1}{.732}$
	BC	=	1.366 km
	AC	=	1.366+1 = 2.366 km
Distance of stones	ill = 1.366 km and 2.366 km		

Let the height of the lamp post be x m.

The angle of elevation of the lamp post from the man's eye and from the ground at the end of the shadow are same. Let it be θ .

In ΔAFE, tan θ	=	$\frac{AF}{FE}$
tan θ	=	$\frac{x-1.8}{3.6}$ (1)
In ΔDCE , tan θ	=	<u>CE</u> CD
ta	nθ=	<u>1.8</u> <u>5.4</u> (2)
From (1) and (2	2),	
	$\frac{1.8}{.6}$ =	$\frac{1.8}{5.4}$
x	- 1.8	$=$ $\frac{1.8 \times 3.6}{5.4}$
x		= 1.2 + 1.8
		= 3 m
Question 36:		A
Solution:		
		x m
		В
		C 120m 60° D 45°

Let the height to be raised be x m.

In ∆BCD, tan 45°		=	$\frac{BC}{CD}$
	1	=	<u>BC</u> 120
In ΔACD, tar	BC	=	120 m
	n 60°	=	$\frac{AC}{CD}$
	$\sqrt{3}$	=	$\frac{x+120}{120}$
120 √3 =		3 =	x +120
	x	=	120√3 -120
	х	=	$120(\sqrt{3}-1)$
		=	120×.732 = 87.84 m

Home Work:

- Solve Exercise 20 Questions 20, 21, 23, 26, 27, 32 in the Maths copy.
- Practise exercise 20 all problems.